Behavioral and neurobiological mechanisms of punishment: implications for psychiatric disorders (2024)

1. Mackintosh NJ. Conditioning and associative learning. Oxford, United Kingdom: Oxford University Press; 1983. [Google Scholar]

2. Dunham PJ. Some effects of punishment upon unpunished responding. J Exp Anal Behav. 1972;17:443–50. [PMC free article] [PubMed] [Google Scholar]

3. Estes WK. Outline of a theory of punishment. In: Campbell BA, Church RM, editors. Punishment and aversive behavior. New York, NY: Appleton-Century-Crofts; 1969. pp. 57–82. [Google Scholar]

4. Declercq M, De Houwer J. On the role of US expectancies in avoidance behavior. Psychon Bull Rev. 2008;15:99–102. [PubMed] [Google Scholar]

5. Hoffman HS, Fleshler M. Stimulus aspects of aversive controls: the effects of response contingent shock. J Exp Anal Behav. 1965;8:89–96. [PMC free article] [PubMed] [Google Scholar]

6. Hunt HF, Brady JV. Some effects of punishment and intercurrent “anxiety” on a simple operant. J Comp Physiol Psychol. 1955;48:305–10. [PubMed] [Google Scholar]

7. Annau Z, Kamin LJ. The conditioned emotional response as a function of intensity of the US. J Comp Physiol Psychol. 1961;54:428–32. [PubMed] [Google Scholar]

8. Church RM. Response suppression. In: Campbell BA, Church RM, editors. Punishment and aversive behavior. New York, NY: Appleton-Century-Crofts; 1969. pp. 111–56. [Google Scholar]

9. Azrin NH. Some effects of two intermittent schedules of immediate and non-immediate punishment. J Psychol. 1956;42:3–21. [Google Scholar]

10. Konorski J. Integrative activity of the brain: an interdisciplinary approach. Chicago: University of Chicago Press; 1967. [Google Scholar]

11. Matsumoto M, Hikosaka O. Representation of negative motivational value in the primate lateral habenula. Nat Neurosci. 2009;12:77–84. [PMC free article] [PubMed] [Google Scholar]

12. Schultz W. Behavioral dopamine signals. Trends Neurosci. 2007;30:203–10. [PubMed] [Google Scholar]

13. Dickinson A, Dearing MF. Appetitive-aversive interactions and inhibitory processes. In: Dickinson A, Boakes RA, editors. Mechanisms of learning and motivation: A memorial volume to Jerzy Konorski. Hillsdale, NJ: Erlbaum; 1979. pp. 203–31. [Google Scholar]

14. Wrase J, Kahnt T, Schlagenhauf F, Beck A, Cohen MX, Knutson B, Heinz A. Different neural systems adjust motor behavior in response to reward and punishment. Neuroimage. 2007;36:1253–62. [PubMed] [Google Scholar]

15. Delgado, MR, Jou, RL, & Phelps, EA. Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers. Front Neurosci. 2011;5:71. 10.3389/fnins.2011.00071. [PMC free article] [PubMed]

16. Church RM. The varied effects of punishment on behavior. Psychol Rev. 1963;70:369–402. [PubMed] [Google Scholar]

17. Miller NE. Learning resistance to pain and fear: Effects of overlearning, exposure, and rewarded exposure in context. J Exp Psychol. 1960;60:137–45. [PubMed] [Google Scholar]

18. Marchant NJ, Campbell EJ & Kaganovsky K. (2017). Punishment of alcohol-reinforced responding in alcohol preferring P rats reveals a bimodal population: implications for models of compulsive drug seeking. Prog Neuro-Psychopharmacol Biol Psychiatry. [PMC free article] [PubMed]

19. Archer J. Rodent sex differences in emotional and related behavior. Behav Biol. 1975;14:451–79. [PubMed] [Google Scholar]

20. Beatty WW, Fessler RG. Sex differences in sensitivity to electric shock in rats and hamsters. Bull Psychon Soc. 1977;10:189–90. [Google Scholar]

21. Bolles RC, Holtz R, Dunn T, Hill W. Comparisons of stimulus learning and response learning in punishment. Learn Motiv. 1980;11:78–96. [Google Scholar]

22. Goodall G. Learning due to the response-shock contingency in signalled punishment. Q J Exp Psychol Sect B: Comp Physiol Psychol. 1984;36:259–79. [Google Scholar]

23. Solomon RL. Punishment. Am Psychol. 1964;19:239–53. [Google Scholar]

24. Boe EE, Church RM. Punishment: Issues and Experimentation. New York, NY: Appleton Century Crofts; 1968. [Google Scholar]

25. Bolles RC. Theory of Motivation. New York, NY: Harper & Row; 1967. [Google Scholar]

26. Pearce JM, Hall G. Overshadowing the instrumental conditioning of a lever-press response by a more valid predictor of the reinforcer. J Exp Psychol: Anim Behav Process. 1978;4:356–67. [Google Scholar]

27. St. Claire-Smith R. The overshadowing and blocking of punishment. Q J Exp Psychol. 1979;31:51–61. [Google Scholar]

28. Jean-Richard-dit-Bressel P, McNally GP. The role of the basolateral amygdala in punishment. Learn Mem. 2015;22:128–37. [PMC free article] [PubMed] [Google Scholar]

29. Goodall G, Mackintosh NJ. Analysis of the Pavlovian properties of signals for punishment. Q J Exp Psychol Sect B: Comp Physiol Psychol. 1987;39:1–23. [PubMed] [Google Scholar]

30. Holman JG, Mackintosh NJ. The control of appetitive instrumental responding does not depend on classical conditioning to the discriminative stimulus. Q J Exp Psychol. 1981;33B:21–31. [Google Scholar]

31. Kamin LJ. ‘Attention-like’ processes in classical conditioning. In: Jones MR, editor. Miami symposium on the prediction of behavior: Aversive stimulation. Coral Gables, FL: University of Miami Press; 1968. pp. 9–33. [Google Scholar]

32. Nasser HM, McNally GP. Appetitive–aversive interactions in Pavlovian fear conditioning. Behav Neurosci. 2012;126:404–22. [PubMed] [Google Scholar]

33. Dickinson A, Pearce JM. Inhibitory interactions between appetitive and aversive stimuli. Psychol Bull. 1977;84:690–711. [Google Scholar]

34. Masserman JH, Pechtel C. Neuroses in monkeys: a preliminary report of experimental observations. Ann New Y Acad Sci. 1953;56:253–65. [PubMed] [Google Scholar]

35. Logan FA, Wagner AR. Reward and Punishment. Boston, MA: Allyn & Bacon; 1965. [Google Scholar]

36. Holz WC, Azrin NH. Discriminative properties of punishment. J Exp Anal Behav. 1961;4:225–32. [PMC free article] [PubMed] [Google Scholar]

37. Bouton ME, Schepers ST. Renewal after the punishment of free operant behavior. J Exp Psychol: Anim Learn Cogn. 2015;41:81–90. [PMC free article] [PubMed] [Google Scholar]

38. Marchant NJ, Khuc TN, Pickens CL, Bonci A, Shaham Y. Context-induced relapse to alcohol seeking after punishment in a rat model. Biol Psychiatry. 2013;73:256–62. [PMC free article] [PubMed] [Google Scholar]

39. Panlilio LV, Thorndike EB, Schindler CW. Lorazepam reinstates punishment-suppressed remifentanil self-administration in rats. Psychopharmacology. 2004;179:374–82. [PubMed] [Google Scholar]

40. Panlilio LV, Thorndike EB, Schindler CW. Reinstatement of punishment-suppressed opioid self-administration in rats: an alternative model of relapse to drug abuse. Psychopharmacology. 2002;168:229–35. [PubMed] [Google Scholar]

41. Marchant NJ, Campbell EJ, Whitaker LR, Harvey BK, Kaganovsky K, Adhikary S, Hope BT, Heins RC, Prisinzano TE, Vardy E, Bonci A, Bossert JM, Shaham Y. Role of ventral subiculum in context-induced relapse to alcohol seeking after punishment-imposed abstinence. J Neurosci. 2016;36:3281–94. [PMC free article] [PubMed] [Google Scholar]

42. Marchant NJ, Rabei R, Kaganovsky K, Caprioli D, Bossert JM, Bonci A, Shaham Y. A critical role of lateral hypothalamus in context-induced relapse to alcohol seeking after punishment-imposed abstinence. J Neurosci. 2014;34:7447–57. [PMC free article] [PubMed] [Google Scholar]

43. Estes, WK. An experimental study of punishment. Psychological Monographs, 1944;57 (3, Whole No. 263).

44. Pelloux Y, Minier-Toribio A, Hoots JK, Bossert JM, Shaham Y. Opposite effects of basolateral amygdala inactivation on context-induced relapse to cocaine seeking after extinction versus punishment. J Neurosci. 2018;38:51–59. [PMC free article] [PubMed] [Google Scholar]

45. Hunt HF, Brady JV. Some effects of electro-convulsive shock on a conditioned emotional response (“anxiety”) J Comp Physiol Psychol. 1951;44:88–98. [PubMed] [Google Scholar]

46. Balleine BW, Dickinson A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology. 1998;37:407–19. [PubMed] [Google Scholar]

47. Kimmel HD, Terrant FR. Bias due to individual differences in yoked control designs. Behav Res Methods Instrum. 1968;1:11–14. [Google Scholar]

48. Church RM. Systematic effect of random error in the yoked control design. Psychol Bull. 1964;62:122–31. [PubMed] [Google Scholar]

49. Pollard GT, Howard JL. Effects of drugs on punished behavior: pre-clinical test for anxiolytics. Pharmacol & Ther. 1990;45:403–24. [PubMed] [Google Scholar]

50. Killcross AS, Everitt BJ, Robbins TW. Symmetrical effects of amphetamine and alpha-flupenthixol on conditioned punishment and conditioned reinforcement: contrasts with midazolam. Psychopharmacology. 1997;129:141–52. [PubMed] [Google Scholar]

51. McNaughton N, Gray JA. Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. J Affect Disord. 2000;61:161–76. [PubMed] [Google Scholar]

52. Escorihuela RM, Fernandez-Teruel A, Zapata A, Nüñez JF, Tobeńa A. Flumazenil prevents the anxiolytic effects of diazepam, alprazolam and adinazolam on the early acquisition of two-way active avoidance. Pharmacol Res. 1993;28:53–58. [PubMed] [Google Scholar]

53. Pellon R, Ruíz A, Lamas E, Rodríguez C. Pharmacological analysis of the effects of benzodiazepines on punished schedule-induced polydipsia in rats. Behav Pharmacol. 2007;18:81–87. [PubMed] [Google Scholar]

54. Barrett JE, Brady LS, Witkin JM. Behavioral studies with anxiolytic drugs. I. Interactions of the benzodiazepine antagonist Ro 15-1788 with chlordiazepoxide, pentobarbital and ethanol. J Pharmacol Exp Ther. 1985;233:554–9. [PubMed] [Google Scholar]

55. Rasmussen EB, Newland MC. Quantification of ethanol’s antipunishment effect in humans using the generalized matching equation. J Exp Anal Behav. 2009;92:161–80. [PMC free article] [PubMed] [Google Scholar]

56. Glowa JR, Barrett JE. Effects of alcohol on punished and unpunished responding of squirrel monkeys. Pharmacol Biochem Behav. 1976;4:169–73. [PubMed] [Google Scholar]

57. Koob GF, Mendelson WB, Schafer J, Wall TL, Britton KT, Bloom FE. Picrotoxinin receptor ligand blocks anti-punishment effects of alcohol. Alcohol. 1989;5:437–43. [PubMed] [Google Scholar]

58. Glowa JR, Crawley J, Suzdak PD, Paul SM. Ethanol and the GABA receptor complex: Studies with the partial inverse benzodiazepine receptor agonist Ro 15-4513. Pharmacol Biochem Behav. 1988;31:767–72. [PubMed] [Google Scholar]

59. Miyazaki K, Miyazaki KW, Doya K. The role of serotonin in the regulation of patience and impulsivity. Mol Neurobiol. 2012;45:213–24. [PMC free article] [PubMed] [Google Scholar]

60. Soubrie P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci. 1986;9:319–35. [Google Scholar]

61. Deakin JW, Graeff FG. 5-HT and mechanisms of defence. J Psychopharmacol. 1991;5:305–15. [PubMed] [Google Scholar]

62. Cools R, Nakamura K, Daw ND. Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology. 2011;36:98–113. [PMC free article] [PubMed] [Google Scholar]

63. Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw. 2002;15:603–16. [PubMed] [Google Scholar]

64. Stein L, Wise CD, Belluzzi JD. Neuropharmacology of reward and punishment. In: Iversen LL, Iversen SD, Snyder SH, editors. Drugs, Neurotransmitters, and Behavior. New York, NY: Springer; 1977. pp. 25–49. [Google Scholar]

65. Faulkner P, Deakin JW. The role of serotonin in reward, punishment and behavioural inhibition in humans: Insights from studies with acute tryptophan depletion. Neurosci Biobehav Rev. 2014;46:365–78. [PubMed] [Google Scholar]

66. Barrett JE. Studies on the effects of 5‐HT1A drugs in the pigeon. Drug Dev Res. 1992;26:299–317. [Google Scholar]

67. Brocco MJ, Koek W, Degryse AD, Colpaert FC. Comparative studies on the anti-punishment effects of chlordiazepoxide, buspirone and ritanserin in the pigeon, Geller-Seifter and Vogel conflict procedures. Behav Pharmacol. 1990;1:403–18. [PubMed] [Google Scholar]

68. Gleeson S, Ahlers ST, Mansbach RS, Foust JM, Barrett JE. Behavioral studies with anxiolytic drugs. VI. Effects on punished responding of drugs interacting with serotonin receptor subtypes. J Pharmacol Exp Ther. 1989;250:809–17. [PubMed] [Google Scholar]

69. Sanger DJ. Effects of buspirone and related compounds on suppressed operant responding in rats. J Pharmacol Exp Ther. 1990;254:420–6. [PubMed] [Google Scholar]

70. Sanger DJ. Increased rates of punished responding produced by buspirone-like compounds in rats. J Pharmacol Exp Ther. 1992;261:513–7. [PubMed] [Google Scholar]

71. Howard JL, Pollard GT. Effects of buspirone in the geller‐seifter conflict test with incremental shock. Drug Dev Res. 1990;19:37–49. [Google Scholar]

72. Pelloux Y, Dilleen R, Economidou D, Theobald D, Everitt BJ. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology. 2012;37:2505–14. [PMC free article] [PubMed] [Google Scholar]

73. Kruse H, Dunn RW, Theurer KL, Novick WJ, Shearman GT. Attenuation of conflict‐induced suppression by clonidine: Indication of anxiolytic activity. Drug Dev Res. 1981;1:137–43. [Google Scholar]

74. Margules DL. Localization of anti-punishment actions of norepinephrine and atropine in amygdala and entopeduncular nucleus of rats. Brain Res. 1971;35:177–84. [PubMed] [Google Scholar]

75. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38:1083–152. [PubMed] [Google Scholar]

76. Hajós‐Korcsok Eacute, Sharp T. Effect of 5‐HT1A receptor ligands on Fos‐like immunoreactivity in rat brain: Evidence for activation of noradrenergic transmission. Synapse. 1999;34:145–53. [PubMed] [Google Scholar]

77. Baarendse PJ, Winstanley CA, Vanderschuren LJ. Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology. 2013;225:719–31. [PMC free article] [PubMed] [Google Scholar]

78. Zalla T, Koechlin E, Pietrini P, Basso G, Aquino P, Sirigu A, Grafman J. Differential amygdala responses to winning and losing: A functional magnetic resonance imaging study in humans. Eur J Neurosci. 2000;12:1764–70. [PubMed] [Google Scholar]

79. Hahn T, Dresler T, Plichta MM, Ehlis AC, Ernst LH, Markulin F, et al. Functional amygdala-hippocampus connectivity during anticipation of aversive events is associated with Gray’s trait “sensitivity to punishment” Biol Psychiatry. 2010;68:459–64. [PubMed] [Google Scholar]

80. Camara E, Rodriguez-Fornells A, Münte TF. Functional connectivity of reward processing in the brain. Front Human Neurosci. 2009;2:19. [PMC free article] [PubMed] [Google Scholar]

81. Liu M, Glowa JR. Regulation of benzodiazepine receptor binding and GABA A subunit mRNA expression by punishment and acute alprazolam administration. Brain Res. 2000;887:23–33. [PubMed] [Google Scholar]

82. Margules DL. Noradrenergic basis of inhibition between reward and punishment in amygdala. J Comp Physiol Psychol. 1968;66:329–34. [PubMed] [Google Scholar]

83. Sommer W, Moller C, Wiklund L, Thorsell A, Rimondini R, Nissbrandt H, Heilig M. Local 5, 7-dihydroxytryptamine lesions of rat amygdala: Release of punished drinking, unaffected plus-maze behavior and ethanol consumption. Neuropsychopharmacology. 2001;24:430–40. [PubMed] [Google Scholar]

84. Piantadosi PT, Yeates DC, Wilkins M, Floresco SB. Contributions of basolateral amygdala and nucleus accumbens subregions to mediating motivational conflict during punished reward-seeking. Neurobiol Learn Mem. 2017;140:92–105. [PubMed] [Google Scholar]

85. Killcross S, Robbins TW, Everitt BJ. Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature. 1997;388:377–80. [PubMed] [Google Scholar]

86. Xue Y, Steketee JD, Sun W. Inactivation of the central nucleus of the amygdala reduces the effect of punishment on cocaine self‐administration in rats. Eur J Neurosci. 2012;35:775–83. [PMC free article] [PubMed] [Google Scholar]

87. Onge JRS, Stopper CM, Zahm DS, Floresco SB. Separate prefrontal-subcortical circuits mediate different components of risk-based decision making. J Neurosci. 2012;32:2886–99. [PMC free article] [PubMed] [Google Scholar]

88. Ragozzino ME. The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann New Y Acad Sci. 2007;1121:355–75. [PubMed] [Google Scholar]

89. Szczepanski SM, Knight RT. Insights into human behavior from lesions to the prefrontal cortex. Neuron. 2014;83:1002–18. [PMC free article] [PubMed] [Google Scholar]

90. Kobayashi S. Organization of neural systems for aversive information processing: pain, error, and punishment. Front Neurosci. 2012;6:136. 10.3389/fnins.2012.00136. [PMC free article] [PubMed]

91. Wiech K, Tracey I. Pain, decisions, and actions: a motivational perspective. Front Neurosci. 2013;7:46. [PMC free article] [PubMed] [Google Scholar]

92. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277:968–71. [PubMed] [Google Scholar]

93. Sikes RW, Vogt BA. Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol. 1992;68:1720–32. [PubMed] [Google Scholar]

94. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science. 1998;280:747–9. [PubMed] [Google Scholar]

95. Furlong TM, Cole S, Hamlin AS, McNally GP. The role of prefrontal cortex in predictive fear learning. Behav Neurosci. 2010;124:574. [PubMed] [Google Scholar]

96. Johansen JP, Fields HL. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat Neurosci. 2004;7:398–403. [PubMed] [Google Scholar]

97. Kaada BR. Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of rhinencephalic and other structures in primates, cat, and dog; a study of responses from the limbic, subcallosal, orbito-insular, piriform and temporal cortex, hippocampus-fornix and amygdala. Acta Physiol Scand Suppl. 1951;24:1–262. [PubMed] [Google Scholar]

98. McCleary RA. Response specificity in the behavioral effects of limbic system lesions in the cat. J Comp Physiol Psychol. 1961;54:605–13. [Google Scholar]

99. Corcoran KA, Quirk GJ. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci. 2007;27:840–4. [PMC free article] [PubMed] [Google Scholar]

100. Marquis JP, Killcross S, Haddon JE. Inactivation of the prelimbic, but not infralimbic, prefrontal cortex impairs the contextual control of response conflict in rats. Eur J Neurosci. 2007;25:559–66. [PubMed] [Google Scholar]

101. Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, Bonci A. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature. 2013;496:359–62. [PubMed] [Google Scholar]

102. Marchant NJ, Furlong TM, McNally GP. Medial dorsal hypothalamus mediates the inhibition of reward seeking after extinction. J Neurosci. 2010;30:14102–15. [PMC free article] [PubMed] [Google Scholar]

103. Peters J, De Vries TJ. D-cycloserine administered directly to infralimbic medial prefrontal cortex enhances extinction memory in sucrose-seeking animals. Neuroscience. 2013;230:24–30. [PubMed] [Google Scholar]

104. Peters J, LaLumiere RT, Kalivas PW. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci. 2008;28:6046–53. [PMC free article] [PubMed] [Google Scholar]

105. Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem. 2009;16:279–88. [PMC free article] [PubMed] [Google Scholar]

106. Killcross S, Coutureau E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex. 2003;13:400–8. [PubMed] [Google Scholar]

107. Arnsten AF, Li BM. Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions. Biol Psychiatry. 2005;57:1377–84. [PubMed] [Google Scholar]

108. Kim CK, Ye L, Jennings JH, Pichamoorthy N, Tang DD, Yoo ACW, et al. Molecular and circuit-dynamical identification of top-down neural mechanisms for restraint of reward seeking. Cell. 2017;170:1013–27. [PMC free article] [PubMed] [Google Scholar]

109. Pelloux Y, Murray JE, Everitt BJ. Differential roles of the prefrontal cortical subregions and basolateral amygdala in compulsive cocaine seeking and relapse after voluntary abstinence in rats. Eur J Neurosci. 2013;38:3018–26. [PMC free article] [PubMed] [Google Scholar]

110. Jean-Richard-dit-Bressel P, McNally GP. Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning. Learn Mem. 2016;23:607–17. [PMC free article] [PubMed] [Google Scholar]

111. Schoenbaum G, Roesch M. Orbitofrontal cortex, associative learning, and expectancies. Neuron. 2005;47:633–6. [PMC free article] [PubMed] [Google Scholar]

112. Cardinal RN, Parkinson JA, Hall J, Everitt BJ. The contribution of the amygdala, nucleus accumbens, and prefrontal cortex to emotion and motivated behaviour. Int Congr Ser. 2003;1250:347–70. [Google Scholar]

113. O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38:329–37. [PubMed] [Google Scholar]

114. Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci. 2009;10:885–92. [PMC free article] [PubMed] [Google Scholar]

115. Arana FS, Parkinson JA, Hinton E, Holland AJ, Owen AM, Roberts AC. Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. J Neurosci. 2003;23:9632–8. [PMC free article] [PubMed] [Google Scholar]

116. Hodgson TL, Mort D, Chamberlain MM, Hutton SB, O’Neill KS, Kennard C. Orbitofrontal cortex mediates inhibition of return. Neuropsychologia. 2002;40:1891–901. [PubMed] [Google Scholar]

117. Morrison SE, Salzman CD. Representations of appetitive and aversive information in the primate orbitofrontal cortex. Ann New Y Acad Sci. 2011;1239:59–70. [PMC free article] [PubMed] [Google Scholar]

118. O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci. 2001;4:95–102. [PubMed] [Google Scholar]

119. Bechara A, Damasio H, Damasio AR, Lee GP. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci. 1999;19:5473–81. [PMC free article] [PubMed] [Google Scholar]

120. Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex. Cereb Cortex. 2000;10:295–307. [PubMed] [Google Scholar]

121. Orsini CA, Trotta RT, Bizon JL, Setlow B. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment. J Neurosci. 2015;35:1368–79. [PMC free article] [PubMed] [Google Scholar]

122. Clarke HF, Horst NK, Roberts AC. Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making. Proc Natl Acad Sci. 2015;112:4176–81. [PMC free article] [PubMed] [Google Scholar]

123. Simmons A, Matthews SC, Stein MB, Paulus MP. Anticipation of emotionally aversive visual stimuli activates right insula. NeuroReport. 2004;15:2261–5. [PubMed] [Google Scholar]

124. Simmons A, Strigo I, Matthews SC, Paulus MP, Stein MB. Anticipation of aversive visual stimuli is associated with increased insula activation in anxiety-prone subjects. Biol Psychiatry. 2006;60:402–9. [PubMed] [Google Scholar]

125. Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, Duncan GH. Distributed processing of pain and vibration by the human brain. J Neurosci. 1994;14:4095–108. [PMC free article] [PubMed] [Google Scholar]

126. Franciotti R, Ciancetta L, Della Penna S, Belardinelli P, Pizzella V, Romani GL. Modulation of alpha oscillations in insular cortex reflects the threat of painful stimuli. Neuroimage. 2009;46:1082–90. [PubMed] [Google Scholar]

127. Hayes DJ, Northoff G. Identifying a network of brain regions involved in aversion-related processing: A cross-species translational investigation. Front Integr Neurosci. 2011;5:49. [PMC free article] [PubMed] [Google Scholar]

128. Jasmin L, Rabkin SD, Granato A, Boudah A, Ohara PT. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature. 2003;424:316–20. [PubMed] [Google Scholar]

129. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67. [PMC free article] [PubMed] [Google Scholar]

130. Cai W, Ryali S, Chen T, Li CSR, Menon V. Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: Evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. J Neurosci. 2014;34:14652–67. [PMC free article] [PubMed] [Google Scholar]

131. Ghahremani A, Rastogi A, Lam S. The role of right anterior insula and salience processing in inhibitory control. J Neurosci. 2015;35:3291–2. [PMC free article] [PubMed] [Google Scholar]

132. Daniel ML, co*cker PJ, Lacoste J, Mar AC, Houeto JL, Belin‐Rauscent A, Belin D. The anterior insula bidirectionally modulates cost‐benefit decision‐making on a rodent gambling task. Eur J Neurosci. 2017;46:2620–8. [PMC free article] [PubMed] [Google Scholar]

133. Gray JA. A critique of Eysenck’s theory of personality. In: Eysenck HJ (ed.). A Model for Personality. Berlin, Germany: Springer-Verlag; 1981. p. 246–76

134. Gray J. The neuropsychology of anxiety: Inquiry into the septohippocampal system. Oxford, United Kingdom: Clarendon Press; 1982. [Google Scholar]

135. Eison AS, Temple DL. Buspirone: Review of its pharmacology and current perspectives on its mechanism of action. Am J Med. 1986;80:1–9. [PubMed] [Google Scholar]

136. Kaada BR, Jarisen J, Andersen P. Stimulation of the hippocampus and medial cortical areas in unanesthetized cats. Neurology. 1953;3:844–844. [PubMed] [Google Scholar]

137. Gray JA, McNaughton N. Comparison between the behavioural effects of septal and hippocampal lesions: a review. Neurosci & Biobehav Rev. 1983;7:119–88. [PubMed] [Google Scholar]

138. Gray JA. Drug effects on fear and frustration: Possible limbic site of action of minor tranquilizers. In: Iversen LL, Iversen SD, Snyder SH, editors. Drugs, Neurotransmitters, and Behavior. New York, NY: Springer; 1977. pp. 433–529. [Google Scholar]

139. Trivedi MA, Coover GD. Lesions of the ventral hippocampus, but not the dorsal hippocampus, impair conditioned fear expression and inhibitory avoidance on the elevated T-maze. Neurobiol Learn Mem. 2004;81:172–84. [PubMed] [Google Scholar]

140. Torrubia R, Avila C, Moltó J, Caseras X. The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Personal Individ Differ. 2001;31:837–62. [Google Scholar]

141. Avila C, Torrubia R. Personality differences in suppression of behavior as a function of the probability of punishment. Personal Individ Differ. 2006;41:249–60. [Google Scholar]

142. Barros-Loscertales A, Meseguer V, Sanjuan A, Belloch V, Parcet MA, Torrubia R, Avila C. Behavioral inhibition system activity is associated with increased amygdala and hippocampal gray matter volume: a voxel-based morphometry study. Neuroimage. 2006;33:1011–5. [PubMed] [Google Scholar]

143. Gupta R, Koscik TR, Bechara A, Tranel D. The amygdala and decision-making. Neuropsychologia. 2011;49:760–6. [PMC free article] [PubMed] [Google Scholar]

144. Matsumoto M, Hikosaka O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature. 2007;447:1111–5. [PubMed] [Google Scholar]

145. Mirenowicz J, Schultz W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature. 1996;379:449–51. [PubMed] [Google Scholar]

146. Liu ZH, Shin R, Ikemoto S. Dual role of medial A10 dopamine neurons in affective encoding. Neuropsychopharmacology. 2008;33:3010–20. [PMC free article] [PubMed] [Google Scholar]

147. Tan KR, Yvon C, Turiault M, Mirzabekov JJ, Doehner J, Labouèbe G, et al. GABA neurons of the VTA drive conditioned place aversion. Neuron. 2012;73:1173–83. [PMC free article] [PubMed] [Google Scholar]

148. Danjo T, Yoshimi K, Funabiki K, Yawata S, Nakanishi S. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. Proc Natl Acad Sci. 2014;111:6455–60. [PMC free article] [PubMed] [Google Scholar]

149. Shippenberg TS, Bals-Kubik R, Huber A, Herz A. Neuroanatomical substrates mediating the aversive effects of D-1 dopamine receptor antagonists. Psychopharmacology. 1991;103:209–14. [PubMed] [Google Scholar]

150. Hong S, Jhou TC, Smith M, Saleem KS, Hikosaka O. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci. 2011;31:11457–71. [PMC free article] [PubMed] [Google Scholar]

151. Balcita-Pedicino JJ, Omelchenko N, Bell R, Sesack SR. The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J Comp Neurol. 2011;519:1143–64. [PMC free article] [PubMed] [Google Scholar]

152. Stamatakis AM, Stuber GD. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci. 2012;15:1105–7. [PMC free article] [PubMed] [Google Scholar]

153. Hikosaka O, Sesack SR, Lecourtier L, Shepard PD. Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci. 2008;28:11825–9. [PMC free article] [PubMed] [Google Scholar]

154. Lawson RP, Seymour B, Loh E, Lutti A, Dolan RJ, Dayan P, et al. The habenula encodes negative motivational value associated with primary punishment in humans. Proc Natl Acad Sci. 2014;111:11858–63. [PMC free article] [PubMed] [Google Scholar]

155. Ullsperger M, von Cramon DY. Error monitoring using external feedback: Specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci. 2003;23:4308–14. [PMC free article] [PubMed] [Google Scholar]

156. Shabel SJ, Proulx CD, Trias A, Murphy RT, Malinow R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron. 2012;74:475–81. [PMC free article] [PubMed] [Google Scholar]

157. Wickens J. Toward an anatomy of disappointment: Reward-related signals from the globus pallidus. Neuron. 2008;60:530–1. [PubMed] [Google Scholar]

158. Hong S, Hikosaka O. The globus pallidus sends reward-related signals to the lateral habenula. Neuron. 2008;60:720–9. [PMC free article] [PubMed] [Google Scholar]

159. Lecca S, Meye FJ, Trusel M, Tchenio A, Harris J, Schwarz MK et al. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. eLife. 2017;6:e30697. [PMC free article] [PubMed]

160. Root DH, Mejias-Aponte CA, Qi J, Morales M. Role of glutamatergic projections from ventral tegmental area to lateral habenula in aversive conditioning. J Neurosci. 2014;34:13906–10. [PMC free article] [PubMed] [Google Scholar]

161. Shabel SJ, Proulx CD, Piriz J, Malinow R. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science. 2014;345:1494–8. [PMC free article] [PubMed] [Google Scholar]

162. Stamatakis AM, Jennings JH, Ung RL, Blair GA, Weinberg RJ, Neve RL, et al. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron. 2013;80:1039–53. [PMC free article] [PubMed] [Google Scholar]

163. Good CH, Wang H, Chen YH, Mejias-Aponte CA, Hoffman AF, Lupica CR. Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms. J Neurosci. 2013;33:16853–64. [PMC free article] [PubMed] [Google Scholar]

164. Hwang EK, Chung JM. 5HT1B receptor-mediated pre-synaptic depression of excitatory inputs to the rat lateral habenula. Neuropharmacology. 2014;81:153–65. [PubMed] [Google Scholar]

165. Jean-Richard-dit-Bressel P, McNally GP. The role of the lateral habenula in punishment. PLoS ONE. 2014;9:e111699. [PMC free article] [PubMed] [Google Scholar]

166. Stopper CM, Floresco SB. What’s better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nat Neurosci. 2014;17:33–35. [PMC free article] [PubMed] [Google Scholar]

167. Christoph GR, Leonzio RJ, Wilcox KS. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci. 1986;6:613–9. [PMC free article] [PubMed] [Google Scholar]

168. Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of tsai and the substantia nigra compacta. J Comp Neurol. 2009;513:566–96. [PMC free article] [PubMed] [Google Scholar]

169. Ilango A, Kesner AJ, Keller KL, Stuber GD, Bonci A, Ikemoto S. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci. 2014;34:817–22. [PMC free article] [PubMed] [Google Scholar]

170. Kreitzer AC, Malenka RC. Striatal plasticity and basal ganglia circuit function. Neuron. 2008;60:543–54. [PMC free article] [PubMed] [Google Scholar]

171. Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010;68:815–34. [PMC free article] [PubMed] [Google Scholar]

172. Hikosaka O. Basal ganglia mechanisms of reward‐oriented eye movement. Ann New Y Acad Sci. 2007;1104:229–49. [PubMed] [Google Scholar]

173. Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012;15:816–8. [PMC free article] [PubMed] [Google Scholar]

174. Kravitz AV, Kreitzer AC. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology. 2012;27:167–77. [PMC free article] [PubMed] [Google Scholar]

175. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature. 2012;482:85–88. [PMC free article] [PubMed] [Google Scholar]

176. Matsumoto M, Hikosaka O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature. 2009;459:837–41. [PMC free article] [PubMed] [Google Scholar]

177. Kim CK, Yang SJ, Pichamoorthy N, Young NP, Kauvar I, Jennings JH, et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat Methods. 2016;13:325–8. [PMC free article] [PubMed] [Google Scholar]

178. Lammel S, Ion DI, Roeper J, Malenka RC. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron. 2011;70:855–62. [PMC free article] [PubMed] [Google Scholar]

179. Lammel S, Lim BK, Malenka RC. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology. 2014;76:351–9. [PMC free article] [PubMed] [Google Scholar]

180. Mantz J, Thierry AM, Glowinski J. Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res. 1989;476:377–81. [PubMed] [Google Scholar]

181. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491:212–7. [PMC free article] [PubMed] [Google Scholar]

182. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: Author; 2013. [Google Scholar]

183. Figee M, Pattij T, Willuhn I, Luigjes J, van den Brink W, Goudriaan A, et al. Compulsivity in obsessive–compulsive disorder and addictions. Eur Neuropsychopharmacol. 2016;26:856–68. [PubMed] [Google Scholar]

184. Morein-Zamir S, Robbins TW. Fronto-striatal circuits in response-inhibition: relevance to addiction. Brain Res. 2015;1628:117–29. [PMC free article] [PubMed] [Google Scholar]

185. Humphreys KL, Lee SS. Risk taking and sensitivity to punishment in children with ADHD, ODD, ADHD+ODD, and controls. J Psychopathol Behav Assess. 2011;33:299–307. [PMC free article] [PubMed] [Google Scholar]

186. Petry NM. Substance abuse, pathological gambling, and impulsiveness. Drug Alcohol Depend. 2001;63:29–38. [PubMed] [Google Scholar]

187. Kasanetz F, Deroche-Gamonet VER, Berson NEG, Balado E, Lafourcade M, Manzoni O, Piazza PV. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science. 2010;328:1709–12. [PubMed] [Google Scholar]

188. Kasanetz F, Lafourcade M, Deroche-Gamonet V, Revest JM, Berson N, Balado E, Fiancette JF, Renault P, Piazza PV, Manzoni OJ. Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Mol Psychiatry. 2012;18:729–37. [PubMed] [Google Scholar]

189. Radke AK, Jury NJ, Kocharian A, Marcinkiewcz CA, Lowery-Gionta EG, Pleil KE, McElligotto ZA, McKlveen JM, Kash TL, Holmes AL. Chronic EtOH effects on putative measures of compulsive behavior in mice. Addict Biol. 2017;22:423–34. [PMC free article] [PubMed] [Google Scholar]

190. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ. High impulsivity predicts the switch to compulsive cocaine-taking. Science. 2008;320:1352–5. [PMC free article] [PubMed] [Google Scholar]

191. Vanderschuren LJMJ, Everitt BJ. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science. 2004;305:1017–9. [PubMed] [Google Scholar]

192. Deroche-Gamonet V, Belin D, Piazza PV. Evidence for addiction-like behavior in the rat. Science. 2004;305:1014–7. [PubMed] [Google Scholar]

193. Smith, RJ, & Laiks, LS (2017). Behavioral and neural mechanisms underlying habitual and compulsive drug seeking. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. [PMC free article] [PubMed]

194. Vanderschuren LJ, Minnaard AM, Smeets JA, Lesscher HM. Punishment models of addictive behavior. Curr Opin Behav Sci. 2017;13:77–84. [Google Scholar]

195. Matthys W, Van Goozen SH, Snoek H, Van Engeland H. Response perseveration and sensitivity to reward and punishment in boys with oppositional defiant disorder. Eur Child Adolesc Psychiatry. 2004;13:362–4. [PubMed] [Google Scholar]

196. Blair RJR, Mitchell DGV, Leonard A, Budhani S, Peschardt KS, Newman C. Passive avoidance learning in individuals with psychopathy: modulation by reward but not by punishment. Personal Individ Differ. 2004;37:1179–92. [Google Scholar]

197. Newman JP, Kosson DS. Passive avoidance learning in psychopathic and nonpsychopathic offenders. J Abnorm Psychol. 1986;95:252–6. [PubMed] [Google Scholar]

198. Newman JP, Patterson CM, Kosson DS. Response perseveration in psychopaths. J Abnorm Psychol. 1987;96:145–8. [PubMed] [Google Scholar]

199. Müller JL, Sommer M, Wagner V, Lange K, Taschler H, Röder CH, et al. Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biol Psychiatry. 2003;54:152–62. [PubMed] [Google Scholar]

200. Schneider F, Habel U, Kessler C, Posse S, Grodd W, Müller-Gärtner HW. Functional imaging of conditioned aversive emotional responses in antisocial personality disorder. Neuropsychobiology. 2000;42:192–201. [PubMed] [Google Scholar]

201. Birbaumer N, Veit R, Lotze M, Erb M, Hermann C, Grodd W, Flor H. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch General Psychiatry. 2005;62:799–805. [PubMed] [Google Scholar]

202. Weber S, Habel U, Amunts K, Schneider F. Structural brain abnormalities in psychopaths—A review. Behav Sci Law. 2008;26:7–28. [PubMed] [Google Scholar]

203. Yang Y, Raine A, Narr KL, Colletti P, Toga AW. Localization of deformations within the amygdala in individuals with psychopathy. Arch General Psychiatry. 2009;66:986–94. [PMC free article] [PubMed] [Google Scholar]

204. Moul C, Killcross S, Dadds MR. A model of differential amygdala activation in psychopathy. Psychol Rev. 2012;119:789–806. [PubMed] [Google Scholar]

205. Eshel N, Roiser JP. Reward and punishment processing in depression. Biol Psychiatry. 2010;68:118–24. [PubMed] [Google Scholar]

206. Hevey D, Thomas K, Laureano-Schelten S, Looney K, Booth R. Clinical depression and punishment sensitivity on the BART. Front Psychol. 2017;8:670. 10.3389/fpsyg.2017.00670. [PMC free article] [PubMed]

207. Must A, Szabó Z, Bódi N, Szász A, Janka Z, Kéri S. Sensitivity to reward and punishment and the prefrontal cortex in major depression. J Affect Disord. 2006;90:209–15. [PubMed] [Google Scholar]

208. Whitmer AJ, Frank MJ, Gotlib IH. Sensitivity to reward and punishment in major depressive disorder: Effects of rumination and of single versus multiple experiences. Cogn Emot. 2012;26:1475–85. [PubMed] [Google Scholar]

209. Elliott R, Sahakian BJ, McKay AP, Herrod JJ, Robbins TW, Paykel ES. Neuropsychological impairments in unipolar depression: the influence of perceived failure on subsequent performance. Psychol Med. 1996;26:975–89. [PubMed] [Google Scholar]

210. Cella M, Dymond S, Cooper A. Impaired flexible decision-making in major depressive disorder. J Affect Disord. 2010;124:207–10. [PubMed] [Google Scholar]

211. Kasch KL, Rottenberg J, Arnow BA, Gotlib IH. Behavioral activation and inhibition systems and the severity and course of depression. J Abnorm Psychol. 2002;111:589–97. [PubMed] [Google Scholar]

212. Dayan P, Huys QJ. Serotonin in affective control. Ann Rev Neurosci. 2009; 32:95–126. [PubMed]

Behavioral and neurobiological mechanisms of punishment: implications for psychiatric disorders (2024)
Top Articles
Latest Posts
Article information

Author: Neely Ledner

Last Updated:

Views: 6004

Rating: 4.1 / 5 (42 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Neely Ledner

Birthday: 1998-06-09

Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

Phone: +2433516856029

Job: Central Legal Facilitator

Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.